
An Approach for Minimal Perfect Hash
Functions for Very Large Databases

Fabiano C. Botelho
Dept. of Computer Science

Federal Univ. of Minas Gerais
Belo Horizonte, Brazil

fbotelho@dcc.ufmg.br

Yoshiharu Kohayakawa
Dept. of Computer Science

Univ. of São Paulo
São Paulo, Brazil

yoshi@ime.usp.br

Nivio Ziviani
Dept. of Computer Science

Federal Univ. of Minas Gerais
Belo Horizonte, Brazil

nivio@dcc.ufmg.br

ABSTRACT
We propose a novel external memory based algorithm for
constructing minimal perfect hash functions h for huge sets
of keys. For a set of n keys, our algorithm outputs h in
time O(n). The algorithm needs a small vector of one byte
entries in main memory to construct h. The evaluation
of h(x) requires three memory accesses for any key x. The
description of h takes a constant number of up to 9 bits for
each key, which is optimal and close to the theoretical lower
bound, i.e., around 2 bits per key. In our experiments, we
used a collection of 1 billion URLs collected from the web,
each URL 64 characters long on average. For this collec-
tion, our algorithm (i) finds a minimal perfect hash function
in approximately 3 hours using a commodity PC, (ii) needs
just 5.45 megabytes of internal memory to generate h and
(iii) takes 8.1 bits per key for the description of h.

Categories and Subject Descriptors
H3.3 [Information Storage and Retrieval]: Performance

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Minimal Perfect Hash Functions, Large Databases

1. INTRODUCTION
A perfect hash function maps a static set of n keys into

a set of m integer numbers without collisions, where m is
greater than or equal to n. If m is equal to n, the func-
tion is called minimal. Figure 1(a) illustrates a perfect hash
function and Figure 1(b) illustrates a minimal perfect hash
function (MPHF).

Minimal perfect hash functions are widely used for mem-
ory efficient storage and fast retrieval of items from static
sets, such as words in natural languages, reserved words
in programming languages or interactive systems, universal

0 n−1...21

0 n−1...21

Hash Table

Key Set

0 n−121 ...

(b)

210 ... m−1

Key Set

Hash Table

(a)

Figure 1: (a) Perfect hash function (b) Minimal per-
fect hash function (MPHF)

resource locations (URLs) in web search engines, or item
sets in data mining techniques. Search engines are nowa-
days indexing tens of billions of pages and algorithms like
PageRank [3], which uses the web link structure to derive a
measure of popularity for Web pages, would benefit from a
MPHF for storage and retrieval of URLs.

Another interesting application for MPHFs is its use as an
indexing structure for databases. The B+ tree is very pop-
ular as an indexing structure for dynamic applications with
frequent insertions and deletions of records. However, for
applications with sporadic modifications and a huge num-
ber of queries the B+ tree is not the best option, because it
performs poorly with very large sets of keys such as those
required for the new frontiers of database applications [19].
Therefore, there are applications for MPHFs in information
retrieval systems, database systems, language translation
systems, electronic commerce systems, compilers, operating
systems, among others.

Until now, because of the limitations of current algorithms,
the use of MPHFs is restricted to scenarios where the set of
keys being hashed is small. However, in many cases it is cru-
cial to deal in an efficient way with very large sets of keys.
In the IR community, the work with huge collections is a
daily task. For instance, the simple assignment of number
identifiers to web pages of a collection can be a challeng-
ing task. While traditional databases simply cannot handle
more traffic once the working set of URLs does not fit in
main memory anymore, the algorithm we propose here to
construct MPHFs can easily scale to billions of entries.

As there are many applications for MPHFs, it is important
to design and implement space and time efficient algorithms

for constructing such functions. The attractiveness of using
MPHFs depends on the following issues:

1. The amount of CPU time required by the algorithms
for constructing MPHFs.

2. The space requirements of the algorithms for construct-
ing MPHFs.

3. The amount of CPU time required by a MPHF for
each retrieval.

4. The space requirements of the description of the re-
sulting MPHFs to be used at retrieval time.

This paper presents a new external memory based algo-
rithm for constructing MPHFs that is very efficient in the
four requirements mentioned previously. First, the algo-
rithm is linear on the size of keys to construct a MPHF,
which is optimal. For instance, for a collection of 1 billion
URLs collected from the web, each one 64 characters long
on average, the time to construct a MPHF using a 2.4 gi-
gahertz PC with 500 megabytes of available main memory
is approximately 3 hours. Second, the algorithm needs a
small a priori defined vector of ⌈n/b⌉ one byte entries in
main memory to construct a MPHF. For the collection of 1
billion URLs and using b = 175, the algorithm needs only
5.45 megabytes of internal memory. Third, the evaluation of
the MPHF for each retrieval requires three memory accesses
and the computation of three universal hash functions. This
is not optimal as any MPHF requires at least one memory
access and the computation of two universal hash functions.
Fourth, the description of a MPHF takes a constant number
of bits for each key, which is optimal. For the collection of
1 billion URLs, it needs 8.1 bits for each key, which is close
to the theoretical lower bound of 1/ ln 2 ≈ 1.4427 bits per
key [15].

2. NOTATION AND TERMINOLOGY
The essential notation and terminology used throughout

this paper are as follows.

• U : key universe. |U | = u.

• S: actual static key set. S ⊂ U , |S| = n ≪ u.

• h : U → M is a hash function that maps keys from a
universe U into a given range M = {0, 1, . . . , m − 1}
of integer numbers.

• h is a perfect hash function if it is one-to-one on S,
i.e., if h(k1) 6= h(k2) for all k1 6= k2 from S.

• h is a minimal perfect hash function (MPHF) if it is
one-to-one on S and n = m.

3. RELATED WORK
Czech, Havas and Majewski [5] provide a comprehensive

survey of the most important theoretical and practical re-
sults on perfect hashing. In this section we review some of
the most important results.

Fredman, Komlós and Szemerédi [10] showed that it is
possible to construct space efficient perfect hash functions
that can be evaluated in constant time with table sizes that
are linear in the number of keys: m = O(n). In their model
of computation, an element of the universe U fits into one

machine word, and arithmetic operations and memory ac-
cesses have unit cost. Randomized algorithms in the FKS
model can construct a perfect hash function in expected
time O(n): this is the case of our algorithm and the works
in [4, 16].

Mehlhorn [15] showed that at least Ω((1/ ln 2)n + ln ln u)
bits are required to represent a MPHF (i.e, at least 1.4427
bits per key must be stored). To the best of our knowledge
our algorithm is the first one capable of generating MPHFs
for sets in the order of billion of keys, and the generated
functions require less than 9 bits per key to be stored.

Some work on minimal perfect hashing has been done un-
der the assumption that the algorithm can pick and store
truly random functions [2, 4, 16]. Since the space require-
ments for truly random functions makes them unsuitable for
implementation, one has to settle for pseudo-random func-
tions in practice. Empirical studies show that limited ran-
domness properties are often as good as total randomness.
We could verify that phenomenon in our experiments by us-
ing the universal hash function proposed by Jenkins [13],
which is time efficient at retrieval time and requires just an
integer to be used as a random seed (the function is com-
pletely determined by the seed).

Pagh [16] proposed a family of randomized algorithms for
constructing MPHFs where the form of the resulting func-
tion is h(x) = (f(x) + d[g(x)]) mod n, where f and g are
universal hash functions and d is a set of displacement val-
ues to resolve collisions that are caused by the function f .
Pagh identified a set of conditions concerning f and g and
showed that if these conditions are satisfied, then a minimal
perfect hash function can be computed in expected time
O(n) and stored in (2 + ǫ)n log

2
n bits.

Dietzfelbinger and Hagerup [6] improved [16], reducing
from (2 + ǫ)n log

2
n to (1 + ǫ)n log

2
n the number of bits

required to store the function, but in their approach f and g
must be chosen from a class of hash functions that meet
additional requirements.

Fox et al. [8, 9] studied MPHFs that bring down the stor-
age requirements we got to between 2 and 4 bits per key.
However, it is shown in [5, Section 6.7] that their algorithms
have exponential running times.

Our previous work [2] improves the one by Czech, Havas
and Majewski [4]. We obtained more compact functions in
less time. Although it is the fastest algorithm we know of,
the resulting functions are stored in O(n log n) bits and one
needs to keep in main memory at generation time a random
graph of n edges and cn vertices, where c ∈ [0.93, 1.15].
Using the well known divide to conquer approach we use
that algorithm as a building block for the new one presented
hereafter.

4. THE ALGORITHM
The main idea supporting our algorithm is the classical

divide and conquer technique. The algorithm is a two-step
external memory based algorithm that generates a MPHF
h for a set S of n keys. Figure 2 illustrates the two steps of
the algorithm: the partitioning step and the searching step.

The partitioning step takes a key set S and uses a univer-
sal hash function h0 proposed by Jenkins [13] to transform
each key k ∈ S into an integer h0(k). Reducing h0(k) mod-
ulo ⌈n/b⌉, we partition S into ⌈n/b⌉ buckets containing at
most 256 keys in each bucket (with high probability).

The searching step generates a MPHFi for each bucket i,

...

...

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

...

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

0 1 2

Buckets

⌈n/b⌉ − 1

Key Set S

0 1 n-1

0 1 n-1

Hash Table

Partitioning

Searching

MPHF0 MPHF1 MPHF2 MPHF⌈n/b⌉−1

Figure 2: Main steps of our algorithm

0 ≤ i < ⌈n/b⌉. The resulting MPHF h(k), k ∈ S, is given
by

h(k) = MPHFi(k) + offset [i], (1)

where i = h0(k) mod ⌈n/b⌉. The ith entry offset [i] of the
displacement vector offset , 0 ≤ i < ⌈n/b⌉, contains the total
number of keys in the buckets from 0 to i − 1, that is, it
gives the interval of the keys in the hash table addressed by
the MPHFi. In the following we explain each step in detail.

4.1 Partitioning step
The set S of n keys is partitioned into ⌈n/b⌉ buckets,

where b is a suitable parameter chosen to guarantee that
each bucket has at most 256 keys with high probability (see
Section 4.3). The partitioning step works as follows:

◮ Let β be the size in bytes of the set S
◮ Let µ be the size in bytes of an a priori reserved

internal memory area
◮ Let N = ⌈β/µ⌉ be the number of key blocks that will

be read from disk into an internal memory area
◮ Let size be a vector that stores the size of each bucket
1. for j = 1 to N do

1.1 Read block Bj of keys from disk
1.2 Cluster Bj into ⌈n/b⌉ buckets using a bucket sort

algorithm and update the entries in the vector size
1.3 Dump Bj to the disk into File j

2. Compute the offset vector and dump it to the disk.

Figure 3: Partitioning step

Statement 1.1 of the for loop presented in Figure 3 reads
sequentially all the keys of block Bj from disk into an inter-
nal area of size µ.

Statement 1.2 performs an indirect bucket sort of the keys
in block Bj and at the same time updates the entries in the
vector size. Let us briefly describe how Bj is partitioned
among the ⌈n/b⌉ buckets. We use a local array of ⌈n/b⌉
counters to store a count of how many keys from Bj belong
to each bucket. The pointers to the keys in each bucket
i, 0 ≤ i < ⌈n/b⌉, are stored in contiguous positions in an
array. For this we first reserve the required number of entries
in this array of pointers using the information from the array
of counters. Next, we place the pointers to the keys in each
bucket into the respective reserved areas in the array (i.e.,

we place the pointers to the keys in bucket 0, followed by
the pointers to the keys in bucket 1, and so on).

To find the bucket address of a given key we use the uni-
versal hash function h0(k) [13]. Key k goes into bucket i,
where

i = h0(k) mod
ln

b

m

. (2)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

...

b)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

a)

...

.

.

.

.

.

.

.

.

.

Physical View

File 1 File 2 File N

0 1 2

Logical View

⌈n/b⌉ − 1

Figure 4: Situation of the buckets at the end of the
partitioning step: (a) Logical view (b) Physical view

Figure 4(a) shows a logical view of the ⌈n/b⌉ buckets gen-
erated in the partitioning step. In reality, the keys belonging
to each bucket are distributed among many files, as depicted
in Figure 4(b). In the example of Figure 4(b), the keys in
bucket 0 appear in files 1 and N , the keys in bucket 1 appear
in files 1, 2 and N , and so on.

This scattering of the keys in the buckets could generate
a performance problem because of the potential number of
seeks needed to read the keys in each bucket from the N
files in disk during the searching step. But, as we show
later in Section 5, the number of seeks can be kept small
using buffering techniques. Considering that only the vector
size, which has ⌈n/b⌉ one-byte entries (remember that each
bucket has at most 256 keys), must be maintained in main
memory during the searching step, almost all main memory
is available to be used as disk I/O buffer.

The last step is to compute the offset vector and dump it
to the disk. We use the vector size to compute the offset
displacement vector. The offset [i] entry contains the number
of keys in the buckets 0, 1, . . . , i − 1. As size[i] stores the
number of keys in bucket i, where 0 ≤ i < ⌈n/b⌉, we have

offset [i] =
i−1
X

j=0

size[j]·

4.2 Searching step
The searching step is responsible for generating a MPHF

for each bucket. Figure 5 presents the searching step algo-
rithm.

Statement 1 of Figure 5 inserts one key from each file in
a minimum heap H of size N . The order relation in H is
given by the bucket address i given by Eq. (2).

Statement 2 has two important steps. In statement 2.1,
a bucket is read from disk, as described in Section 4.2.1. In
statement 2.2, a MPHF is generated for each bucket i, as
described in Section 4.2.2. The description of MPHFi is a

◮ Let H be a minimum heap of size N , where the
order relation in H is given by Eq. (2), that is, the
remove operation removes the item with smallest i

1. for j = 1 to N do { Heap construction }
1.1 Read key k from File j on disk
1.2 Insert (i, j, k) in H

2. for i = 0 to ⌈n/b⌉ − 1 do
2.1 Read bucket i from disk driven by heap H
2.2 Generate a MPHF for bucket i
2.3 Write the description of MPHFi to the disk

Figure 5: Searching step

vector gi of 8-bit integers. Finally, statement 2.3 writes the
description gi of MPHFi to disk.

4.2.1 Reading a bucket from disk
In this section we present the refinement of statement 2.1

of Figure 5. The algorithm to read bucket i from disk is
presented in Figure 6.

1. while bucket i is not full do
1.1 Remove (i, j, k) from H
1.2 Insert k into bucket i
1.3 Read sequentially all keys k from File j that have

the same i and insert them into bucket i
1.4 Insert the triple (i, j, x) in H , where x is the first

key read from File j that does not have the
same bucket index i

Figure 6: Reading a bucket

Bucket i is distributed among many files and the heap H
is used to drive a multiway merge operation. In Figure 6,
statement 1.1 extracts and removes triple (i, j, k) from H ,
where i is a minimum value in H . Statement 1.2 inserts
key k in bucket i. Notice that the k in the triple (i, j, k)
is in fact a pointer to the first byte of the key that is kept
in contiguous positions of an array of characters (this array
containing the keys is initialized during the heap construc-
tion in statement 1 of Figure 5). Statement 1.3 performs a
seek operation in File j on disk for the first read operation
and reads sequentially all keys k that have the same i and
inserts them all in bucket i. Finally, statement 1.4 inserts
in H the triple (i, j, x), where x is the first key read from
File j (in statement 1.3) that does not have the same bucket
address as the previous keys.

The number of seek operations on disk performed in state-
ment 1.3 is discussed in Section 5.1, where we present a
buffering technique that brings down the time spent with
seeks.

4.2.2 Generating a MPHF for each bucket
To the best of our knowledge the algorithm we have de-

signed in our previous work [2] is the fastest published al-
gorithm for constructing MPHFs. That is why we are using
that algorithm as a building block for the algorithm pre-
sented here.

Our previous algorithm is a three-step internal memory
based algorithm that produces a MPHF based on random

graphs. For a set of n keys, the algorithm outputs the re-
sulting MPHF in expected time O(n). For a given bucket i,
0 ≤ i < ⌈n/b⌉, the corresponding MPHFi has the following
form:

MPHFi(k) = gi[a] + gi[b] (3)

a = hi1(k) mod t

b = hi2(k) mod t

t = c × size[i]

where hi1(k) and hi2(k) are the same universal function pro-
posed by Jenkins [13] that was used in the partitioning step
described in Section 4.1.

In order to generate the function above the algorithm in-
volves the generation of simple random graphs Gi = (Vi, Ei)
with |Vi| = t = c × size[i] and |Ei| = size [i], with c ∈
[0.93, 1.15]. To generate a simple random graph with high
probability1, two vertices a and b are computed for each
key k in bucket i. Thus, each bucket i has a correspond-
ing graph Gi = (Vi, Ei), where Vi = {0, 1, . . . , t − 1} and
Ei =

˘

{a, b} : k ∈ bucket i
¯

. In order to get a simple
graph, the algorithm repeatedly selects hi1 and hi2 from a
family of universal hash functions until the corresponding
graph is simple. The probability of getting a simple graph

is p = e−1/c2 . For c = 1, this probability is p ≃ 0.368, and
the expected number of iterations to obtain a simple graph
is 1/p ≃ 2.72.

The construction of MPHFi ends with a computation of
a suitable labelling of the vertices of Gi. The labelling is
stored into vector gi. We choose gi[v] for each v ∈ Vi in
such a way that Eq. (3) is a MPHF for bucket i. In order
to get the values of each entry of gi we first run a breadth-
first search on the 2-core of Gi, i.e., the maximal subgraph
of Gi with minimal degree at least 2 (see, e.g., [1, 12, 17])
and a depth-first search on the acyclic part of Gi (see [2] for
details).

4.3 Determining b

The partitioning step can be viewed as the well known
“balls into bins” problem [18, 7] where n keys (the balls)
are placed independently and uniformly into ⌈n/b⌉ buckets
(the bins). The main question related to that problem we
are interested in is: what is the maximum number of keys in
any bucket? In fact, we want to get the maximum value for
b that makes the maximum number of keys in any bucket no
greater than 256 with high probability. This is important,
as we wish to use 8 bits per entry in the vector gi of each
MPHFi, where 0 ≤ i < ⌈n/b⌉. Let BSmax be the maximum
number of keys in any bucket.

Clearly, BSmax is the maximum of ⌈n/b⌉ random vari-
ables Zi, each with binomial distribution Bi(n, p) with pa-
rameters n and p = 1/⌈n/b⌉. However, the Zi are not in-
dependent. Note that Bi(n, p) has mean and variance ≃
b. To give an upper estimate for the probability of the
event BSmax ≥ γ, we can estimate the probability that we
have Zi ≥ γ for a fixed i, and then sum these estimates
over all i. Let γ = b + σ

p

b ln(n/b), where σ =
√

2. Ap-
proximating Bi(n, p) by the normal distribution with mean

and variance b, we obtain the estimate (σ
p

2π ln(n/b))−1 ×
exp(−(1/2)σ2 ln(n/b)) for the probability that Zi ≥ γ oc-
curs, which, summed over all i, gives that the probability
1We use the terms ‘with high probability’ to mean ‘with
probability tending to 1 as n → ∞’.

n
b=128 b=175

Worst Case Average Eq. (4) Worst Case Average Eq. (4)
1.0 × 106 177 172.0 176 232 226.6 230
4.0 × 106 182 177.5 179 241 231.8 234
1.6 × 107 184 181.6 183 241 236.1 238
6.4 × 107 195 185.2 186 244 239.0 242
5.12 × 108 196 191.7 190 251 246.3 247
1.0 × 109 197 191.6 192 253 248.9 249

Table 1: Values for BSmax : worst case and average case obtained in the experiments and using Eq. (4),
considering b = 128 and b = 175 for different number n of keys in S.

that BSmax ≥ γ occurs is at most 1/(σ
p

2π ln(n/b)), which
tends to 0 as n → ∞. Thus, we have shown that, with high
probability,

BSmax ≤ b +

r

2b ln
n

b
. (4)

In our algorithm the maximum number of keys in any
bucket must be at most 256. Table 1 presents the values for
BSmax obtained experimentally and using Eq. (4). The table
presents the worst case and the average case, considering
b = 128, b = 175 and Eq. (4), for several numbers n of keys
in S. The estimation given by Eq. (4) is very close to the
experimental results.

Now we estimate the biggest problem our algorithm is able
to solve for a given b. Table 2 shows the biggest problem
the algorithm can solve. The values were obtained from
Eq. (4), considering b = 128 and b = 175 and imposing
that BSmax ≤ 256.

b Problem size (n)
128 1030 keys
175 1010 keys

Table 2: Using Eq. (4) to estimate the biggest prob-
lem our algorithm can solve.

5. ANALYTICAL RESULTS
The purpose of this section is fourfold. First, we show

that our algorithm runs in expected time O(n). Second, we
present the main memory requirements for constructing the
MPHF. Third, we discuss the cost of evaluating the resulting
MPHF. Fourth, we present the space required to store the
resulting MPHF.

5.1 The linear time complexity
First, we show that the partitioning step presented in Fig-

ure 3 runs in O(n) time. Each iteration of the for loop in
statement 1 runs in O(|Bj |) time, 1 ≤ j ≤ N , where |Bj |
is the number of keys that fit in block Bj of size µ. This is
because statement 1.1 just reads |Bj | keys from disk, state-
ment 1.2 runs a bucket sort like algorithm that is well known
to be linear in the number of keys it sorts (i.e., |Bj | keys),
and statement 1.3 just dumps |Bj | keys to the disk into

File j. Thus, the for loop runs in O(
PN

j=1
|Bj |) time. As

PN
j=1

|Bj | = n, then the partitioning step runs in O(n) time.
Second, we show that the searching step presented in Fig-

ure 5 also runs in O(n) time. The heap construction in
statement 1 runs in O(N) time, for N ≪ n. We have as-
sumed that insertions and deletions in the heap cost O(1)

because N is typically much smaller than n (see Table 5).

Statement 2 runs in O(
P⌈n/b⌉−1

i=0
size[i]) time (remember

that size[i] stores the number of keys in bucket i). As
P⌈n/b⌉−1

i=0
size[i] = n, if statements 2.1, 2.2 and 2.3 run in

O(size [i]) time, then statement 2 runs in O(n) time.
Statement 2.1 reads O(size[i]) keys of bucket i and is de-

tailed in Figure 6. As we are assuming that each read or
write on disk costs O(1) and each heap operation also costs
O(1), statement 2.1 takes O(size [i]) time. However, the keys
of bucket i are distributed in at most BSmax files on disk in
the worst case (recall that BSmax is the maximum number
of keys found in any bucket). Therefore, we need to take
into account that the critical step in reading a bucket is in
statement 1.3 of Figure 6, where a seek operation in File j
may be performed by the first read operation.

In order to amortize the number of seeks performed we
use a buffering technique [14]. We create a buffer j of size�= µ/N for each file j, where 1 ≤ j ≤ N (recall that µ is the
size in bytes of an a priori reserved internal memory area).
Every time a read operation is requested to file j and the
data is not found in the jth buffer, � bytes are read from
file j to buffer j. Hence, the number of seeks performed
in the worst case is given by β/� (remember that β is the
size in bytes of S). For that we have made the pessimistic
assumption that one seek happens every time buffer j is
filled in. Thus, the number of seeks performed in the worst
case is 64n/�, since each URL is 64 bytes long on average.
Therefore, the number of seeks is linear on n and amortized
by �.

It is important to emphasize two things. First, the op-
erating system uses techniques to diminish the number of
seeks and the average seek time. This makes the amortiza-
tion factor to be greater than � in practice. Second, almost
all main memory is available to be used as file buffers be-
cause just a small vector of ⌈n/b⌉ one-byte entries must be
maintained in main memory, as we show in Section 5.2.

Statement 2.2 runs our internal memory based algorithm
in order to generate a MPHF for each bucket. That al-
gorithm is linear, as we showed in [2]. As it is applied to
buckets with size[i] keys, statement 2.2 takes O(size[i]) time.

Statement 2.3 has time complexity O(size [i]) because it
writes to disk the description of each generated MPHF and
each description is stored in c × size [i] + O(1) bytes, where
c ∈ [0.93, 1.15]. In conclusion, our algorithm takes O(n)
time because both the partitioning and the searching steps
run in O(n) time.

5.2 Space used for constructing a MPHF
The vector size is kept in main memory all the time. The

vector size has ⌈n/b⌉ one-byte entries. It stores the number
of keys in each bucket and those values are less than or equal

n (millions) 1 2 4 8 16 32
Average time (s) 6.1 ± 0.3 12.2 ± 0.6 25.4 ± 1.1 51.4 ± 2.0 117.3 ± 4.4 262.2 ± 8.7

SD (s) 2.6 5.4 9.8 17.6 37.3 76.3

Table 3: Internal memory based algorithm: average time in seconds for constructing a MPHF, the standard
deviation (SD), and the confidence intervals considering a confidence level of 95%.

to 256. For example, for a set of 1 billion keys and b = 175
the vector size needs 5.45 megabytes of main memory.

We need an internal memory area of size µ bytes to be
used in the partitioning step and in the searching step. The
size µ is fixed a priori and depends only on the amount of
internal memory available to run the algorithm (i.e., it does
not depend on the size n of the problem).

The additional space required in the searching step is con-
stant, once the problem was broken down into several small
problems (at most 256 keys) and the heap size is supposed
to be much smaller than n (N ≪ n). For example, for a set
of 1 billion keys and an internal area of µ = 250 megabytes,
the number of files is N = 248.

5.3 Evaluation cost of the MPHF
Now we consider the amount of CPU time required by the

resulting MPHF at retrieval time. The MPHF requires for
each key the computation of three universal hash functions
and three memory accesses (see Eqs. (1), (2) and (3)). This
is not optimal. Pagh [16] showed that any MPHF requires
at least the computation of two universal hash functions and
one memory access. However, our algorithm is the first one
in the literature that is able to solve problems in the order
of billions of keys.

5.4 Description size of the MPHF
The number of bits required to store the MPHF generated

by the algorithm is computed by Eq. (5). We need to store
each gi vector presented in Eq. (3), where 0 ≤ i < ⌈n/b⌉. As
each bucket has at most 256 keys, each entry in a gi vector
has 8 bits. In each gi vector there are c × size[i] entries
(recall c ∈ [0.93, 1.15]). When we sum up the number of

entries of ⌈n/b⌉ gi vectors we have c
P⌈n/b⌉−1

i=0
size[i] = cn

entries. We also need to store 3⌈n/b⌉ integer numbers of
log

2
n bits referring respectively to the offset vector and the

two random seeds of h1i and h2i. In addition, we need to
store ⌈n/b⌉ 8-bit entries of the vector size. Therefore,

Required Space = 8cn +
n

b
(3 log

2
n + 8) bits. (5)

Considering c = 0.93 and b = 175, the number of bits
per key to store the description of the resulting MPHF for
a set of 1 billion keys is 8.1. If we set b = 128, then the bits
per key ratio increases to 8.3. Theoretically, the number
of bits required to store the MPHF in Eq. (5) is O(n log n)

as n → ∞. However, for sets of size up to 2b/3 keys the
number of bits per key is lower than 9 bits (note that 2b/3 >
258 > 1017 for b = 175). Thus, in practice the resulting
function is stored in O(n) bits.

6. EXPERIMENTAL RESULTS
In this section we present the experimental results. We

start presenting the experimental setup. We then present
experimental results for the internal memory based algo-
rithm [2] and for our algorithm. Finally, we discuss how the

amount of internal memory available affects the runtime of
our algorithm.

6.1 The data and the experimental setup
The algorithms were implemented in the C language and

are available at http://cmph.sf.net under the GNU Lesser
General Public License (LGPL). All experiments were car-
ried out on a computer running the Linux operating system,
version 2.6, with a 2.4 gigahertz processor and 1 gigabyte of
main memory. In the experiments related to the new algo-
rithm we limited the main memory in 500 megabytes.

Our data consists of a collection of 1 billion URLs collected
from the Web, each URL 64 characters long on average. The
collection is stored on disk in 60.5 gigabytes.

6.2 Performance of the internal memory based
algorithm

Our three-step internal memory based algorithm presented
in [2] is used for constructing a MPHF for each bucket. It
is a randomized algorithm because it needs to generate a
simple random graph in its first step. Once the graph is
obtained the other two steps are deterministic.

Thus, we can consider the runtime of the algorithm to
have the form αnZ for an input of n keys, where α is some
machine dependent constant that further depends on the
length of the keys and Z is a random variable with geometric

distribution with mean 1/p = e1/c2 (see Section 4.2.2). All
results in our experiments were obtained taking c = 1; the
value of c, with c ∈ [0.93, 1.15], in fact has little influence in
the runtime, as shown in [2].

The values chosen for n were 1, 2, 4, 8, 16 and 32 million.
Although we have a dataset with 1 billion URLs, on a PC
with 1 gigabyte of main memory, the algorithm is able to
handle an input with at most 32 million keys. This is mainly
because of the graph we need to keep in main memory.
The algorithm requires 25n + O(1) bytes for constructing
a MPHF (details about the data structures used by the al-
gorithm can be found in http://cmph.sf.net).

In order to estimate the number of trials for each value
of n we use a statistical method for determining a suitable
sample size (see, e.g., [11, Chapter 13]). As we obtained
different values for each n, we used the maximal value ob-
tained, namely, 300 trials in order to have a confidence level
of 95%.

Table 3 presents the runtime average for each n, the re-
spective standard deviations, and the respective confidence
intervals given by the average time ± the distance from av-
erage time considering a confidence level of 95%. Observing
the runtime averages one sees that the algorithm runs in
expected linear time, as shown in [2].

Figure 7 presents the runtime for each trial. In addition,
the solid line corresponds to a linear regression model ob-
tained from the experimental measurements. As we can see,
the runtime for a given n has a considerable fluctuation.
However, the fluctuation also grows linearly with n.

The observed fluctuation in the runtimes is as expected;

0
10

0
20

0
30

0
40

0
50

0
T

im
e

(s
)

0 10 20 30
Number of keys (millions)

Experimental times Linear regression

Figure 7: Time versus number of keys in S for the
internal memory based algorithm. The solid line
corresponds to a linear regression model.

recall that this runtime has the form αnZ with Z a geometric
random variable with mean 1/p = e. Thus, the runtime has

mean αn/p = αen and standard deviation αn
p

(1 − p)/p2 =

αn
p

e(e − 1). Therefore, the standard deviation also grows
linearly with n, as experimentally verified in Table 3 and in
Figure 7.

6.3 Performance of the new algorithm
The runtime of our algorithm is also a random variable,

but now it follows a (highly concentrated) normal distribu-
tion, as we discuss at the end of this section. Again, we
are interested in verifying the linearity claim made in Sec-
tion 5.1. Therefore, we ran the algorithm for several num-
bers n of keys in S.

The values chosen for n were 1, 2, 4, 8, 16, 32, 64, 128, 512
and 1000 million. We limited the main memory in 500
megabytes for the experiments. The size µ of the a priori
reserved internal memory area was set to 250 megabytes,
the parameter b was set to 175 and the building block al-
gorithm parameter c was again set to 1. In Section 6.4 we
show how µ affects the runtime of the algorithm. The other
two parameters have insignificant influence on the runtime.

We again use a statistical method for determining a suit-
able sample size to estimate the number of trials to be run
for each value of n. We got that just one trial for each n
would be enough with a confidence level of 95%. However,
we made 10 trials. This number of trials seems rather small,
but, as shown below, the behavior of our algorithm is very
stable and its runtime is almost deterministic (i.e., the stan-
dard deviation is very small).

Table 4 presents the runtime average for each n, the re-
spective standard deviations, and the respective confidence
intervals given by the average time ± the distance from av-
erage time considering a confidence level of 95%. Observing
the runtime averages we noticed that the algorithm runs in
expected linear time, as shown in Section 5.1. Better still, it
is only approximately 60% slower than our internal memory
based algorithm. To get that value we used the linear regres-
sion model obtained for the runtime of the internal memory
based algorithm to estimate how much time it would require
for constructing a MPHF for a set of 1 billion keys. We got
2.3 hours for the internal memory based algorithm and we
measured 3.67 hours on average for our algorithm. Increas-
ing the size of the internal memory area from 250 to 600
megabytes (see Section 6.4), we have brought the time to

3.09 hours. In this case, our algorithm is just 34% slower in
this setup.

Figure 8 presents the runtime for each trial. In addition,
the solid line corresponds to a linear regression model ob-
tained from the experimental measurements. As we were
expecting the runtime for a given n has almost no variation.

0
50

00
10

00
0

15
00

0
T

im
e

(s
)

0 200 400 600 800 1000
Number of keys (millions)

Experimental times Linear regression

Figure 8: Time versus number of keys in S for our
algorithm. The solid line corresponds to a linear
regression model.

An intriguing observation is that the runtime of the al-
gorithm is almost deterministic, in spite of the fact that it
uses as building block an algorithm with a considerable fluc-
tuation in its runtime. A given bucket i, 0 ≤ i < ⌈n/b⌉, is
a small set of keys (at most 256 keys) and, as argued in
Section 6.2, the runtime of the building block algorithm is
a random variable Xi with high fluctuation. However, the
runtime Y of the searching step of our algorithm is given
by Y =

P

0≤i<⌈n/b⌉ Xi. Under the hypothesis that the Xi

are independent and bounded, the law of large numbers (see,
e.g., [11]) implies that the random variable Y/⌈n/b⌉ con-
verges to a constant as n → ∞. This explains why the
runtime of our algorithm is almost deterministic.

6.4 Controlling disk accesses
In order to bring down the number of seek operations

on disk we benefit from the fact that our algorithm leaves
almost all main memory available to be used as disk I/O
buffer. In this section we evaluate how much the parameter
µ affects the runtime of our algorithm. For that we fixed n
in 1 billion of URLs, set the main memory of the machine
used for the experiments to 1 gigabyte and used µ equal to
100, 200, 300, 400, 500 and 600 megabytes.

Table 5 presents the number of files N , the buffer size used
for all files, the number of seeks in the worst case consid-
ering the pessimistic assumption mentioned in Section 5.1,
and the time to generate a MPHF for 1 billion of keys as a
function of the amount of internal memory available. Ob-
serving Table 5 we noticed that the time spent in the con-
struction decreases as the value of µ increases. However,
for µ > 400, the variation on the time is not as significant
as for µ ≤ 400. This can be explained by the fact that
the kernel 2.6 I/O scheduler of Linux has smart policies for
avoiding seeks and diminishing the average seek time (see
http://www.linuxjournal.com/article/6931).

7. CONCLUDING REMARKS
This paper has presented a novel external memory based

algorithm for constructing MPHFs that works for sets in the

n (millions) 1 2 4 8 16
Average time (s) 6.9 ± 0.3 13.8 ± 0.2 31.9 ± 0.7 69.9 ± 1.1 140.6 ± 2.5
SD 0.4 0.2 0.9 1.5 3.5

n (millions) 32 64 128 512 1000
Average time (s) 284.3 ± 1.1 587.9 ± 3.9 1223.6 ± 4.9 5966.4 ± 9.5 13229.5 ± 12.7
SD 1.6 5.5 6.8 13.2 18.6

Table 4: Our algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and
the confidence intervals considering a confidence level of 95%.

µ (MB) 100 200 300 400 500 600
N (files) 619 310 207 155 124 104� (buffer size in KB) 165 661 1, 484 2, 643 4, 129 5, 908
β/� (# of seeks in the worst case) 384, 478 95, 974 42, 749 24, 003 15, 365 10, 738
Time (hours) 4.04 3.64 3.34 3.20 3.13 3.09

Table 5: Influence of the internal memory area size (µ) in our algorithm runtime.

order of billions of keys. The algorithm outputs the resulting
function in O(n) time and, furthermore, it can be tuned to
run only 34% slower (in our setup) than the fastest algorithm
available in the literature for constructing MPHFs [2]. In
addition, the space requirement of the resulting MPHF is of
up to 9 bits per key for datasets of up to 258 ≃ 1017.4 keys.
The algorithm is simple and needs just a small vector of size
approximately 5.45 megabytes in main memory to construct
a MPHF for a collection of 1 billion URLs, each one 64
bytes long on average. Therefore, almost all main memory
is available to be used as disk I/O buffer. Making use of
such a buffering scheme, our algorithm can produce a MPHF
for a set of 1 billion keys in approximately 3 hours using a
commodity PC. For any key, the evaluation of the resulting
MPHF takes three memory accesses and the computation of
three universal hash functions.

In future work, we will exploit the fact that the searching
step intrinsically presents a high degree of parallelism and
requires 73% of the construction time. Therefore, a parallel
implementation of our algorithm will allow evaluation of the
resulting function in parallel and it will also scale to sets of
hundreds of billions of keys.

8. REFERENCES
[1] B. Bollobás. Random graphs, volume 73 of Cambridge

Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, second edition, 2001.

[2] F. Botelho, Y. Kohayakawa, and N. Ziviani. A
practical minimal perfect hashing method. In 4th
International Workshop on Efficient and Experimental
Algorithms, pages 488–500. Springer Lecture Notes in
Computer Science vol. 3503, 2005.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
7th International World Wide Web Conference, pages
107–117, April 1998.

[4] Z. Czech, G. Havas, and B. Majewski. An optimal
algorithm for generating minimal perfect hash
functions. Information Processing Letters,
43(5):257–264, 1992.

[5] Z. Czech, G. Havas, and B. Majewski. Fundamental
study perfect hashing. Theoretical Computer Science,
182:1–143, 1997.

[6] M. Dietzfelbinger and T. Hagerup. Simple minimal
perfect hashing in less space. In The 9th European
Symposium on Algorithms (ESA), volume 2161 of

Lecture Notes in Computer Science, pages 109–120,
2001.

[7] E. Drinea, A. Frieze, and M. Mitzenmacher. Balls and
bins models with feedback. Symposium on Discrete
Algorithms (ACM SODA), pages 308–315, 2002.

[8] E. Fox, Q. Chen, and L. Heath. A faster algorithm for
constructing minimal perfect hash functions. In
Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 266–273, 1992.

[9] E. Fox, L. S. Heath, Q. Chen, and A. Daoud. Practical
minimal perfect hash functions for large databases.
Communications of the ACM, 35(1):105–121, 1992.

[10] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time. J.
ACM, 31(3):538–544, July 1984.

[11] R. Jain. The art of computer systems performance
analysis: techniques for experimental design,
measurement, simulation, and modeling. John Wiley,
first edition, 1991.

[12] S. Janson, T. Luczak, and A. Ruciński. Random
graphs. Wiley-Inter., 2000.

[13] B. Jenkins. Algorithm alley: Hash functions. Dr.
Dobb’s Journal of Software Tools, 22(9), september
1997.

[14] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley,
second edition, 1973.

[15] K. Mehlhorn. Data Structures and Algorithms 1:
Sorting and Searching. Springer-Verlag, 1984.

[16] R. Pagh. Hash and displace: Efficient evaluation of
minimal perfect hash functions. In Workshop on
Algorithms and Data Structures, pages 49–54, 1999.

[17] B. Pittel and N. C. Wormald. Counting connected
graphs inside-out. J. Combin. Theory Ser. B,
93(2):127–172, 2005.

[18] M. Raab and A. Steger. “Balls into bins” — A simple
and tight analysis. Lecture Notes in Computer
Science, 1518:159–170, 1998.

[19] M. Seltzer. Beyond relational databases. ACM Queue,
3(3), April 2005.

